莆仙生活网 > 知识库 >

超导体的应用

来源:莆仙生活网时间:2024-02-28 19:43:54编辑:莆仙君

常温超导体实现了吗

常温超导体暂未实现。美国罗彻斯特大学的科学家成功地获得了一种常温超导材料。这种材料能够在大约摄氏14度(287K)的常温条件下表现出超导性。然而这是在265万个大气压的超高压条件下实现的。相关研究成果以“封面故事”的形式出现在了15日的《自然》杂志上。这是一种简单有机源的碳硫氢化合物,研究人员在钻石砧单元中通过光化学反应微量地合成了这种物质。自超导现象被发现一个多世纪以来,人类还是第一次获得常温超导材料。从这一点来说确实是 历史 性的突破。超导是凝聚态物理学中的一个“圣杯”。最早由荷兰物理学家昂内斯于1911年发现。当时他发现汞在温度降至摄氏-268度(4.2K)左右时电阻突然消失了。他把这种神奇的特性称为超导。1933年,科学家又发现当超导体的电阻消失时,原来存在于其体内的磁场会被排挤到外部,形成一种超强磁场。超导材料具有改变世界的潜力。它是磁悬浮列车、核磁共振仪、粒子加速器,乃至初代量子计算机的核心组件。但是以往的超导材料只有在超低温条件下才有超导性,这使得它们的使用和维护成本极高。此前超导材料中实现温度最高的是超氢化镧,能够在摄氏-23至-13度的条件下展现超导特性。常温超导的候选材料通常是铜氧化物和铁化合物,但是近年来人们发现氢也很有希望跻身其列。这是因为超导材料的实现温度越高,就越青睐于较小的元素质量和较强的化学键。而氢是最轻的元素,同时氢键又是最强的一种键。单纯的固态金属氢是一种理想的超导候选材料,但获得它需要极高的压力。在自然界中,可能只有气态巨行星的内部存在金属氢。于是,某些富含氢的替代物开始引起研究人员的注意。这些材料可以在相对较低的压力环境中展现出和纯氢相似的超导态。罗彻斯特大学的研究人员首先合成了超氢化钇,这种物质可以在摄氏-11度和177万个大气压的条件下成为超导体。然后又在与其共价的富氢有机源物质中寻找带有超导性的材料。最终发现了这种能够在常温下展现超导特性的碳硫氢化合物。研究人员表示,对这种化合物进行“结构成分微调”还有可能获得实现温度更高的超导材料。但是要使这种材料具有超导性,仍需对其施以265万个大气压的压力,因此几乎没有什么实用价值。研究人员希望未来能够在较低压力条件下找到具有超导特性的常温材料,而这依然是个艰巨的任务。

常温下的超导体可以用来制作什么

常温下的超导体可以用来制作远距离输电导体。在一定条件下呈现超导电性的材料。超导体(英文名:superconductor),又称为超导材料,指在某一温度下,电阻为零的导体。在实验中,若导体电阻的测量值低于10-25Ω,可以认为电阻为零。超导体不仅具有零电阻的特性,另一个重要特征是完全抗磁性。人类最初发现超导体是在1911年,这一年荷兰科学家海克·卡末林·昂内斯(Heike Kamerlingh Onnes)等人发现,汞在极低的温度下,其电阻消失,呈超导状态。此后超导体的研究日趋深入,一方面,多种具有实用潜力的超导材料被发现,另一方面,对超导机理的研究也有一定进展。超导体已经进行了一系列试验性应用,并且开展了一定的军事、商业应用,在通信领域可以作为光子晶体的缺陷材料。应用超导体的应用可分为三类:强电应用、弱电应用和抗磁性应用。强电应用即大电流应用,包括超导发电、输电和储能;弱电应用即电子学应用,包括超导计算机、超导天线、超导微波器件等;抗磁性应用主要包括磁悬浮列车和热核聚变反应堆等。

超导材料的应用

超导材料的应用主要有:1、利用材料的超导电性可制作磁体,应用于电机、高能粒子加速器、磁悬浮运输、受控热核反应、储能等;可制作电力电缆,用于大容量输电;可制作通信电缆和天线,其性能优于常规材料。2、利用材料的完全抗磁性可制作无摩擦陀螺仪和轴承。3、利用约瑟夫森效应可制作一系列精密测量仪表以及辐射探测器、微波发生器、逻辑元件等。利用约瑟夫森结作计算机的逻辑和存储元件,其运算速度比高性能集成电路的快10到20倍,功耗只有四分之一。超导材料的发展历史1911年,荷兰物理学家昂尼斯发现,水银的电阻率并不像预料的那样随温度降低逐渐减小,而是当温度降到4.15K附近时,水银的电阻突然降到零。某些金属、合金和化合物,在温度降到绝对零度附近某一特定温度时,它们的电阻率突然减小到无法测量的现象叫做超导现象,能够发生超导现象的物质叫做超导体。氮是空气的主要成分,液氮制冷机的效率比液氦至少高10倍,所以液氮的价格实际仅相当于液氦的1/100。液氮制冷设备简单,因此,现有的高温超导体虽然还必须用液氮冷却,但却被认为是20世纪科学上最伟大的发现之一。

超导体的应用有哪些

超导体的应用有哪些如下:1、利用材料的超导电性可制作磁体,应用于电机、高能粒子加速器、磁悬浮运输、受控热核反应、储能等;可制作电力电缆,用于大容量输电;可制作通信电缆和天线,其性能优于常规材料。2、利用材料的完全抗磁性可制作无摩擦陀螺仪和轴承。3、利用约瑟夫森效应可制作一系列精密测量仪表以及辐射探测器、微波发生器、逻辑元件等。利用约瑟夫森结作计算机的逻辑和存储元件,其运算速度比高性能集成电路的快10到20倍,功耗只有四分之一。超导材料的发展历史1911年,荷兰物理学家昂尼斯发现,水银的电阻率并不像预料的那样随温度降低逐渐减小,而是当温度降到4.15K附近时,水银的电阻突然降到零。某些金属、合金和化合物,在温度降到绝对零度附近某一特定温度时,它们的电阻率突然减小到无法测量的现象叫做超导现象,能够发生超导现象的物质叫做超导体。氮是空气的主要成分,液氮制冷机的效率比液氦至少高10倍,所以液氮的价格实际仅相当于液氦的1/100。液氮制冷设备简单,因此,现有的高温超导体虽然还必须用液氮冷却,但却被认为是20世纪科学上最伟大的发现之一。

超导体的应用有哪些?

超导体的应用有:1、强电应用超导发电机:目前,超导发电机有两种含义。一种含义是将普通发电机的铜绕组换成超导体绕组,以提高电流密度和磁场强度,具有发电容量大、体积小、重量轻、电抗小、效率高的优势。2、弱电应用超导计算机:高速计算机要求集成电路芯片上的元件和连接线密集排列,但密集排列的电路在工作时会发生大量的热,而散热是超大规模集成电路面临的难题。3、抗磁性应用超导磁悬浮列车:利用超导材料的抗磁性,将超导材料放在一块永久磁体的上方,由于磁体的磁力线不能穿过超导体,磁体和超导体之间会产生排斥力,使超导体悬浮在磁体上方。扩展资料:超导体的基本特性:1、完全导电性完全导电性又称零电阻效应,指温度降低至某一温度以下,电阻突然消失的现象。完全导电性适用于直流电,超导体在处于交变电流或交变磁场的情况下,会出现交流损耗,且频率越高,损耗越大。2、完全抗磁性完全抗磁性又称迈斯纳效应,“抗磁性”指在磁场强度低于临界值的情况下,磁力线无法穿过超导体,超导体内部磁场为零的现象,“完全”指降低温度达到超导态、施加磁场两项操作的顺序可以颠倒。3、通量量子化通量量子化又称约瑟夫森效应,指当两层超导体之间的绝缘层薄至原子尺寸时,电子对可以穿过绝缘层产生隧道电流的现象,即在超导体(superconductor)—绝缘体(insulator)—超导体(superconductor)结构可以产生超导电流。参考资料来源:百度百科-超导体

上一篇:有恒产者有恒心无恒产者无恒心

下一篇:没有了

相关推荐

热门头条