一致收敛
一致收敛的定义是什么?
一致收敛是高等数学中的一个重要概念,又称均匀收敛。一致收敛是一个区间(或点集)相联系,而不是与某单独的点相联系。除了柯西准则和余项准则外,还可以通过Weierstrass判别法、Abel判别法和Dirichlet判别法来判别函数项级数是否一致收敛。一致收敛性是函数列或函数项级数的一种性质。一致收敛函数的判别方法有很多种,最常见的有Cauchy判别法、Abel判别法、Dirichlete判别法等。一致收敛函数具有连续性、可积性、可微性的特点。函数项级数作为数项级数的推广,一致收敛性的判别法类似于数项级数,都有Cauchy判别法、Abel判别法、Dirichlete判别法等。另外,结合数项级数的比式判别法和根式判别法,可以得到函数项级数一致收敛性的比式判别法和根式判别法,同时利用p 级数的收敛性和优级数判别法还可得到函数项级数一致收敛性的对数判别法。
一致收敛的定义是什么?
一致收敛性定义:其概念可叙述为函数列 fn一致收敛至函数 f 代表所有的 x,fn(x) 收敛至 f(x) 有相同的收敛速度。由于它较逐点收敛更强,故能保持一些重要的分析性质,例如连续性、黎曼可积性。一致收敛和逐点收敛定义的区别在于,在一致收敛中仅与相关,而在逐点收敛中还与相关。所以一致收敛必定逐点收敛,而反之则不然。收敛是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。高数中收敛是指函数有极限。函数收敛准则:关于函数在某点处的收敛定义。对于任意实数c,存在此数大于0,对任意两个数a、b,满足a减b大于0小于c。收敛的定义方式很好的体现了数学分析的精神实质。
一致收敛的定义是什么?
一致收敛的定义:有些函数序列不仅在收敛域上点态收敛于相应的极限函数,而且在收敛速度上具有某种整体一致性,我们称这种性质为一致收敛性。一致概念实际上针对的是变量的全体,就如一致连续和一致收敛的概念中所描述的那样 ,但是收敛就不存在这样的问题,例如函数列在单点处的收敛就退化为数列收敛的。定理:1、一致收敛的函数项级数在某点处的连续性可以直接“过渡”到极限函数上去。2、一致收敛的函数项级数在某点处的单侧极限可以直接“过渡”到极限函数上去。3、一致收敛的函数项级数是可以逐项求积的。4、桐乡函数构成的函数项级数是一致收敛的,只要在某一点处原级数是收敛的,那么就有原级数是收敛的并且导函数可以由原级数的逐项求导表示。
函数列处处收敛和一致收敛的区别
如下:{f_n(x)}一致收敛到f(x):对任意ε,存在N>0,使得对所有n>N,|f_n(x)-f(x)|<ε对所有的x都成立。{f_n(x)}点点收敛到f(x):对任意一点x,对任意ε,存在N>0,使得对所有n>N,有|f_n(x)-f(x)|<ε。那么我刚才说的收敛速度是什么意思呢?就是说对于给定的一个ε,要到第几项,才能保证f_n(x)已经足够接近f(x)了。一致收敛说:给了一个ε,就能保证不管你在哪一个x处,只要到了第N项,f_n(x)就足够靠近f(x)点点收敛就做不到了,它只能说,给了一个ε,对于每一点x,能找到一个N,使得从第N项开始,f_n(x)足够靠近f(x),但是要注意这个N是取决于x的。也就是说,对于不同的x,N的值可能是不同的。所以说点点收敛不能保证{f_n(x)}在每一点的收敛速度是一致的。函数列(sequence of functions)指各项为具有相同定义域的函数的序列。若{fn}为函数列,其中每个函数fn的定义域为A,则A也称为{fn}的定义域,若对某个x0∈A,数列{fn(x0)}收敛,则x0称为{fn}的收敛点,或称{fn}在点x0收敛,{fn}的所有收敛点的集合称为它的收敛域。若对每个x∈D,有当n→∞时,fn(x)→f(x),则函数f(x)称为函数列{fn}(或{fn(x)})在D上的极限函数,这时也说,函数列{fn}在D上处处收敛于f,或在D上逐点收敛于f。对一般的函数列来说,除研究它的逐点收敛(或称点态收敛)这种收敛方式外,还要研究一致收敛,这是为了研究极限函数是否继承相应函数列的各项(函数)所具有的分析性质(连续、可微、可积等)而引入的一种收敛方式 。
函数收敛的定义是什么?
函数收敛是由对函数在某点收敛定义引申出来的函数在某点收敛,是指当自变量趋向这一点时,其函数值的极限就等于函数在该点的值若函数在定义域的每一点都收敛,则通常称函数是收敛的有界和收敛不一样。函数收敛和有界的关系有界不一定收敛。函数收敛则:1、在x0处收敛,则必存在x0的一个去心领域,函数在这个去心领域内有界。2、当x趋于无穷时收敛,以正无穷为例,则必存在M,使函数在[M,+∞)上有界。一般来说,连续函数在闭区间具有有界性。 例如: y=x+6在[1,2]上有最小值7,最大值8,所以说它的函数值在7和8之间变化,是有界的,所以具有有界性。但正切函数在有意义区间,比如(-π/2,π/2)内则无界。性质:无穷小与有界函数的乘积仍为无穷小。收敛和收敛性这两个词(在外语中通常是同一个词)有时泛指函数或数列是否有极限的性质,或者按哪一种意义(什么极限过程)有极限。在这个意义下,数学分析中所讨论的收敛性的不同意义(不同类型的极限过程)大致有:对数列(点列)只讨论当其项序号趋于无穷的收敛性。对一元和多元函数最基本的有自变量趋于定值(定点)的和自变量趋于无穷的这两类收敛性;对多元函数还有沿特殊路径的和累次极限意义下的收敛性;对函数列(级数)有逐点收敛和一致收敛。
上一篇:王保安是谁的秘书
下一篇:没有了