铟的用途
铟稀有金属有哪些用途?
铟稀有金属有以下用途:
铟主要用于生产ITO靶材(用于生产液晶显示器和平板屏幕),这一用途是铟锭的主要消费领域,占全球铟消费量的70%。其次的几个消费领域分别是:电子半导体领域,占全球消费量的12%;焊料和合金领域占12%;研究行业占6%。另,因为其较软的性质在某些需填充金属的行业上也用于压缝。如:较高温度下的真空缝隙填充材料。
已知铟矿物有硫铟铜矿(CuInS2)、硫铟铁矿(FeInS4)和水铟矿等。铟主要呈类质同象存在于铁闪锌矿、赤铁矿、方铅矿以及其他多金属硫化物矿石中。此外,锡石、黑钨矿、普通角闪石中也含铟。工业上,铟的主要来源为闪锌矿(含铟0.0001~0.1%),在铅锌矿冶炼过程中作为副产品回收,锡冶炼也回收铟。
铟属于稀散金属,是稀缺资源。全球预估铟储量仅5万吨,其中可开采的占50%。由于未发现独立铟矿,工业通过提纯废锌、废锡的方法生产金属铟,回收率约为50-60%,这样,真正能得到的铟只有1.5-1.6万吨。
铟是一种银灰色,质地极软的易熔金属。熔点156.61℃。沸点2060℃。相对密度d7.30。液态铟能浸润玻璃,并且会粘附在接触过的表面上留下黑色的痕迹。
铟有微弱的放射性,天然铟有两种主要同位素,其一为In-113为稳定核素,In-115为β- 衰变。因此,在使用中尽可能避免直接接触。
稀有金属铟和美的用途、与之相关的行业是哪些?谢谢
铟(英文:indium) 拼音:yīn 化学式:IN
物理性质:
颜色和状态:银白色金属
声音在其中的传播速率(m/S):1215
密度:7.31克/厘米3
熔点:156.61℃
沸点:2080℃
莫氏硬度:1.2
电离能 (kJ /mol) : 5.786电子伏特
M - M+ 558.3
M+ - M2+ 1820.6
M2+ - M3+ 2704
M3+ - M4+ 5200
M4+ - M5+ 7400
M5+ - M6+ 9500
M6+ - M7+ 11700
M7+ - M8+ 13900
M8+ - M9+ 17200
M9+ - M10+ 19700
其它:稀散元素之一,有延展性,比铝软。
化学性质:
元素原子量:114.8
元素类型:金属
原子体积(立方厘米/摩尔):15.7
原子序数:49
元素符号:In
相对原子质量:114.8
核内质子数:49
核外电子数:49
核电荷数:49
氧化态:
主要:In+3
其它:In+1, In+2
质子质量:8.1977E-26
质子相对质量:49.343
所属周期:5
所属族数:IIIA
摩尔质量:115g/mol
外围电子排布:5s2 5p1
核外电子排布:2,8,18,18,3
晶体结构:晶胞为单斜晶胞。
晶胞参数:
a = 325.23 pm
b = 325.23 pm
c = 494.61 pm
α = 90°
β = 90°
γ = 90°
原子半径:2
其它:易溶于酸或碱;不能分解水;在空气中很稳定;燃烧时会发生鲜紫色的火焰。
元素辅助资料:
元素来源:主要以微量存在于锡石和闪锌矿中,用化学法或电解法由闪锌矿制得。
元素用途:质软,能拉成细丝。纯态的金属铟几乎没有什么商业价值,主要用于制造合金,以降低金属的熔点。铟银合金或铟铅合金的导热能力高于银或铅。可作低熔合金、轴承合金、半导体、电光源等的原料。主要作飞机用的涂敷铅的银轴承的镀层。铟箔往往插入核反应堆中以控制核反应的进行,铟箔在反应堆中与中子反应后便呈现放射性,其呈现放射性的速度,可作为测量和反应进行的一个有价值的参数。
元素在太阳中的含量(ppm):0.004
元素在海水中的含量(ppm):太平洋表面 0.0000001
地壳中含量(ppm):0.049
发现:
1863年,德国的赖希和李希特,用光谱法研究闪锌矿,发现有新元素,即铟。
铊被发现和取得后,德国弗赖贝格(Freiberg)矿业学院物理学教授赖希由于对铊的一些性质感兴趣,希望得到足够的金属进行实验研究。他在1863年开始在夫赖堡希曼尔斯夫斯特(Himmelsfüst)出产的锌矿中寻找这种金属。这种矿石所含主要成分是含砷的黄铁矿、闪锌矿、辉铅矿、硅土、锰、铜和少量的锡、镉等。赖希认为其中还可能含有铊。虽然实验花费了很多时间,他却没有获得期望的元素。但是他得到了一种不知成分的草黄色沉淀物。他认为是一种新元素的硫化物。
只有利用光谱进行分析来证明这一假设。可是赖希是色盲,只得请求他的助手H.T.李希特进行光谱分析实验。李希特在第一次实验就成功了,他在分光镜中发现一条靛蓝色的明线,位置和铯的两条蓝色明亮线不相吻合,就从希腊文中“靛蓝”(indikon)一词命名它为indium(铟)(In)。两位科学家共同署名发现铟的报告。分离出金属铟的还是他们两人共同完成的。他们首先分离出铟的氯化物和氢氧化物,利用吹管在木炭上还原成金属铟,于1867年4月在法国科学院展出。
铟在地壳中的分布量比较小,又很分散。它的富矿还没有发现过,只是在锌和其他一些金属矿中作为杂质存在,因此它被列入稀有金属。
危险性:
重金属,有轻微毒性。
健康危害:
铟比铅还毒。美国和英国已公布了铟的职业接触限值均为0.1 mg/m3〔11〕。而这两个国家铅的标准为0.15 mg/m3。说明铟的毒性不可轻视。液晶显示器含有铟,据新华社消息,28岁的黄力(化名)就职于江苏一家生产手机液晶显示屏的企业,主要工作是将一些金属粉喷在液晶屏幕模板上.工作两年后,他经常呼吸困难、 喘不过气来,检查发现肺部布满雪花状的白色颗粒物.经过半年多时间的医学循征,呼吸科专家认为,黄力是罕见的铟中毒,他血液里的铟是常规的300倍。黄力肺里的粉尘颗粒无法抽出,所以肺部功能很难恢复,而且还在不断地自我排出蛋白质。所以每隔一个月就要到医院进行一次全肺灌洗,否则就可能旧病复发,有生命危险。
环境危害: 对环境有危害,对水体可造成污染。
燃爆危险: 可燃,具刺激性。
用途
铟锭因其光渗透性和导电性强,主要用于生产ITO 靶材(用于生产液晶显示器和平板屏幕),这一用途是铟锭的主要消费领域,占全球铟消费量的70%。
其次的几个消费领域分别是:电子半导体领域,占全球消费量的12%;焊料和合金领域占12%;研究行业占6%。另,因为其较软的性质在某些需填充金
属的行业上也用于压缝。如:较高温度下的真空缝隙填充材料。
产地
中国是世界上铟锭主要生产地,此外全球还有美国、加拿大及日本等国生产。
我国的铟分布在铅锌矿床和铜多金属矿床中,保有储量为13014t,分布15 个省区,主要集中在云南(占全国铟总储量的40%)、广西(31.4%)、内蒙古(8.2%)、青海(7.8%)、广东(7%)。
尚未发现铟的单独矿床,它以微量伴生在锌、锡等矿物中。当其含量达十万分之几,就有工业生产价值,目前主要是从闪锌矿中提取。另外,从锌、铅和锡生产的废渣、烟尘中也可回收铟。
......................................................................
元素名称:镁(měi)镁
元素类型:金属
相对原子质量:24.31
发现者:戴维
发现年代:1808年
化学式:Mg
核内质子数:12
核外电子数:12
核电荷数:12
原子体积:(立方厘米/摩尔)
13.97
元素在太阳中的含量:(ppm)
700
元素在海水中的含量:(ppm)
1200
地壳中含量:(ppm)
23000
电负性:1.31
氧化态:
Main
Mg+2
Other
电离能 (kJ/ mol)
M - M+ 737.7
M+ - M2+ 1450.7
M2+ - M3+ 7732.6
M3+ - M4+ 10540
M4+ - M5+ 13630
M5+ - M6+ 17995
M6+ - M7+ 21703
M7+ - M8+ 25656
M8+ - M9+ 31642
M9+ - M10+ 35461
外围电子排布:3s2 核外电子排布: 2,8,2
晶体结构:晶胞为六方晶胞.。
晶胞参数:
a = 320.94 pm
b = 320.94 pm
c = 521.08 pm
α = 90°
β = 90°
γ = 120°
莫氏硬度:2.5
同位素及放射线: Mg-24 Mg-25 Mg-26 Mg-27[9.45m] Mg-28[21h]
电子亲合和能: -21 KJ·mol-1
第一电离能:738 KJ·mol-1 第二电离能:1451 KJ·mol-1 第三电离能:7733 KJ·mol-1
单质密度:1.738 g/cm3 单质熔点:650.0 ℃ 单质沸点:1170.0 ℃
原子半径:1.72 埃 离子半径:0.66(+2) 埃 共价半径:1.36 埃
热导率: W/(m·K)
156
发现过程
1808年,英国的戴维,用钾还原白镁氧(即氧化镁MgO),最早制得少量的镁。
物理性质:银白色的金属,密度1.738克/厘米3,熔点648.9℃。沸点1090℃。化合价+2,电离能7.646电子伏特,是轻金属之一,具有延展性,金属镁无磁性,且有良好的热消散性。
化学性质
具有比较强的还原性,能与热水反应放出氢气,燃烧时能产生眩目的白光,镁与氟化物、氢氟酸和铬酸不发生作用,也不受苛性碱侵蚀,但极易溶解于有机和无机酸中,镁能直接与氮、硫和卤素等化合,包括烃、醛、醇、酚、胺、脂和大多数油类在内的有机化学药品与镁仅仅轻微地或者根本不起作用。
1.与非金属单质的反应: 2Mg+O2=2MgO 3Mg+N2=Mg3N2 (点燃)
2.与水的反应: Mg+2H2O=Mg(OH)2+H2↑(加热)
3.与酸的反应:Mg+2HCl=MgCl2+H2 ↑ Mg+H2SO4=MgSO4+H2 ↑
4.与氧化物的反应:2Mg+CO2=2MgO+C(点燃)
5.与空气反应:2Mg+O2=2MgO(点燃)
*2Mg+CO2=2MgO+C(点燃)
3Mg+N2=Mg3N2(点燃)
*注:该反应在氧气充足时一般不发生或发生后又有 C+O2=CO2(点燃),因为在反应后不见有黑色固体生成。
元素来源
镁存在于菱镁矿MgCO3、白云石CaMg(CO3)2、光卤石KCl·MgCl2·H2O中。工业上利用电解熔融氯化镁或在电炉中用硅铁等使其还原而制得金属镁,前者叫做熔盐电解法,后者叫做硅热还原法。氯化镁可以从海水中提取,每立方英里海水含有约120亿磅镁。
Mg在海水中的提取
① CaCO3= CaO+CO2↑(高温)
CaO+H2O=Ca(OH)2
② Ca(OH)2+MgCl2=Mg(OH)2↓+CaCl2
③ Mg(OH)2+2HCl+6H2O=MgCl2~6H2O+2H2O
④ MgCl2~6H2O= MgCl2 +6H2O (在氯化氢气流中加热生成无水氯化镁)
⑤ MgCl2(熔融)= Mg+Cl2↑(通电)
元素用途
常用做还原剂,去置换钛、锆、铀、铍等金属。主要用于制造轻金属合金、球墨铸铁、科学仪器脱硫剂脱氢和格氏试剂,也能用于制烟火、闪光粉、镁盐等。结构特性类似于铝,具有轻金属的各种用途,可作为飞机、导弹的合金材料。但是镁在汽油燃点可燃,这限制了它的应用。
日常用途:体操运动员常涂镁粉来增加摩擦力. (是MgCO3)
医疗用途:治疗缺镁和痉挛。
体育用途:在紧张运动几小时前注射,或在紧张运动后注射以弥补镁的流失。
风险:如果注射速度太快,会造成发烧和全身不适。
金属镁能与大多数非金属和酸反应;在高压下能与氢直接合成氢化镁;镁能与卤化烃或卤化芳烃作用合成格利雅试剂,广泛应用于有机合成。镁具有生成配位化合物的明显倾向。
镁是航空工业的重要材料,镁合金用于制造飞机及森、发动机零件等;镁还用来制造照相和光学仪器等;镁及其合金的非结构应用也很广;镁作为一种强还原剂,还用于钛、锆、铍、铀和铪的生产中。
纯镁的强度小,但镁合金是良好的轻型结构材料,广泛用于空间技术、航空、汽车和仪表等工业部门。一架丧事超音速飞机约有5%的镁合金构件,一枚导弹一般消耗100~200公斤镁合金。镁是其他合金(特别是铝合金)的主要组元,它与其他元素配合能使铝合金热处理强化;球墨铸铁用镁作球化剂;而有些金属(如钛和锆)生产又用镁作还原剂;镁是燃烧弹弹和照明弹不能缺少的组成物;镁粉是节日烟花必需的原料;镁是核工业上的结构材料或包装材料;镁肥能促使植物对磷的吸收利用,缺镁植物则生长趋于停滞。镁在人民生活中占有重要地位的一种基础材料。
镁在笔记本电脑中的应用
镁在笔记本电脑中的应用在本期刊物中,你将看到戴尔公司用镁合金作为笔记本电脑的外壳,从而保护其内部组件,延长笔记本电脑的使用寿命。这种用途利用了镁合金的高强度和耐用性。镁再次证明了其不仅可以应用在汽车、家具等领域,更可以在计算机行业满足高科技的需求。这将进一步扩大人们对镁的使用范围。
相关信息
镁是在自然界中分布最广的十个元素之一,但由于它不易从化合物中还原成单质状态,所以迟迟未被发现。
长时期里,化学家们将从含碳酸镁的菱镁矿焙烧获得的镁的氧化物苦土当作是不可再分割的物质。在1789年拉瓦锡发表的元素表中就列有它。1808年,戴维在成功制得钙以后,使用同样的办法又成功的制得了金属镁。从此镁被确定为元素,并被命名为magnesium,元素符号是Mg。Magnesium来自希腊城市美格里西亚Magnesia,因为在这个城市附近出产氧化镁,被称为magnesia alba,即白色氧化镁。不过镁的名称magnesium很容易和锰的名字manganum混淆,虽然有人提出更改,却一直沿用下来。
镁是一种参与生物体正常生命活动及新陈代谢过程必不可少的元素。镁影响细胞的多种生物功能:影响钾离子和钙离子的转运,调控信号的传递,参与能量代谢、蛋白质和核酸的合成;可以通过络合负电荷基团,尤其核苷酸中的磷酸基团来发挥维持物质的结构和功能;催化酶的激活和抑制及对细胞周期、细胞增殖及细胞分化的调控;镁还参与维持基因组的稳定性,并且还与机体氧化应激和肿瘤发生有关。
镁的吸收代谢:成人身体总镁含量约25g,其中60%~65%存在于骨、齿,27%分布于软组织。食物中的镁在整个肠道均可被吸收,但主要是在空肠末端与回肠部位吸收,吸收率一般约为30%。膳食中促进镁吸收的成分主要有氨基酸、乳糖等;抑制镁吸收的主要成分有过多的磷、草酸、植酸和膳食纤维等。成人从膳食中摄入的镁大量从胆汁、胰液和肠液分泌到肠道,其中60%~70%随粪便排出,部分从汗和脱落的皮肤细胞丢失。
镁离子是生物机体中含量较多的一种正离子,其量在整体中仅次于钙、钠、钾而居第四位;镁离子在细胞内的含量则仅次于钾离子而居第二位。整粒的种子、未经碾磨的谷物、青叶蔬菜、豆类和坚果是日粮镁最为丰富的来源;鱼、肉、奶和水果中镁含量较低;经过加工的食物,在加工过程中镁几乎全部损失。肌酸六磷酸、粗纤维、乙醇、过量的磷酸盐和钙离子削弱了镁的吸收,这可能是因为降低了内腔镁的浓度。
镁可以有效促进钙的吸收.在细胞中有一个特殊的钙的通路,其形成的主要元素是镁.所以人体缺镁会影响钙的代谢.
稀有金属“铟”有哪些用途?
用途:1、主要用于制造合金,以降低金属的熔点。2、铟银合金或铟铅合金可作低熔合金、轴承合金、半导体、电光源等的原料。主要作飞机用的涂敷铅的银轴承的镀层。3、铟锭因其光渗透性和导电性强,主要用于生产液晶显示器和平板屏幕。4、较高温度下的真空缝隙填充材料。小知识: 颜色为银白色金属,易溶于酸或碱;不能分解水;在空气中很稳定;燃烧时会发生鲜紫色的火焰。属于 重金属,有轻微毒性,危害健康。 对环境有危害,对水体可造成污染。可燃,具刺激性。
铟研究的目的和意义
铟(Indium,In)是一种稀有金属元素,属于第ⅢA族,为银白色稀 散软金属,原子序数为49,原子量为114.82,熔点156.2 ℃,沸点2 000 ℃,密度7.3 g/cm3,与铊同属一族。金属铟有延展性,可塑性大,在潮湿空气中表面易生成氢氧化膜,加热超过熔点时可迅速与氧硫化合。铟易溶于硝酸、盐酸和硫酸,与溴在常温下即能化合,加热时可与碘化合。常见的铟化合物主要有硫酸铟〔In2(SO4)3〕、硝酸铟〔In(NO3)3〕、氯化铟〔InCl3〕、氧化铟〔In2O3〕、氢氧化铟〔In(OH)3〕、磷化铟〔InP〕、砷化铟〔InAs〕等。近年来,随着科技的发展,铟及其化合物已经被广泛地应用于各种合金的制造、半导体材料的合成、红外线检测器和震荡器的制造以及临床医学中的肿瘤放射治疗和放射性核素显影等行业。其中合金的种类最多,用途也最为广泛。常见的合金有用于航空工业发动机轴承的银铅铟合金;有用于原子能工业上中子吸收材料的铟镉铋合金;有用于真空密封材料及玻璃粘合剂的铟锡合金;还有用于制造假牙的金铟、铜铟、银铟和钯铟合金〔1〕。目前,虽然国内对于铟的开发利用还刚刚开始,但是对于铟的冶炼和提纯已有了相当长的历史。因此,在我国职业接触铟及其化合物仍以铟的生产行业为主。随着我国科学技术整体水平的不断提高,铟及其化合物将不断地被开发和利用,人们接触铟的机会必然增多,铟及其化合物的毒性也将日益受到人们的关注。本文介绍了近年来对铟及其化合物毒性方面的一些研究结果。
1 铟及其化合物的毒代动力学〔1〕
1.1 吸收
除三氯化铟和硫酸铟吸收稍多外,大部分铟盐在胃肠道吸收很少,三氧化二铟大鼠及狗经口吸收仅0.2%~0.4%。大鼠气管内吸入或注入可溶性铟盐,约50%在二周内由肺吸收,其余存留在肺间隔、气管和支气管的淋巴结内长达二个月。
1.2 代谢
经各种途径吸收入血的铟可与血浆蛋白(转铁蛋白、α-球蛋白和白蛋白)结合,迅速转运到软组织及骨骼。胶体状的铟则不与血浆蛋白结合,但可被白细胞吞噬后送到肝和脾的网状内皮系统。进入体内的铟主要蓄积在骨骼;皮下注射铟时可大部分蓄积在皮肤和肌肉内;腹腔注射铟时可大部分蓄积在肠系膜和肝脏,然后转移到脾、肾和骨骼。
1.3 排泄
进入体内的铟主要经尿及粪从体内排出,其经尿排泄过程可分两个时期(经各种途径进入体内)开始为快排泄期,大约为20天,然后则为长时间的缓慢排泄期,可达数月或数年。
2 铟及其化合物的毒性
2.1 急性毒性
铟的化合物不同,其表现出的急性毒性也不同,如胶体状铟和羟化铟的急性毒性较离子态铟高40倍。铟的染毒途径不同,其表现出的急性毒性也不同,如小鼠皮下注射枸橼酸铟的致死量为0.6 mg/kg,在几天内先发生后腿麻痹、惊厥,继而窒息死亡。而静脉注射毒性为皮下毒性的4倍〔1〕。
Oda K〔2〕把雄性Fischer大鼠344只分成4组,分别按0,1.2,6.0,62 mg/kg 的剂量气管注入磷化铟(InP)粉尘,染毒后第1天和第8天观察大鼠的表现。结果表明从剂 量反应关系上可见第1天大鼠体内支气管肺泡液(BALF)中的过氧化物歧化酶(SOD)和乳酸脱氢酶(LDH)活性都随着染毒剂量的增加而升高,而在支气管肺泡液中的炎性细胞数和总蛋白量(TP)并不增高。预示嗜中性细胞和肺泡巨噬细胞对磷化铟有反应,表明染毒后第1天已经处在炎症的早期。当染毒后的第8天只有62 mg/kg 剂量组支气管肺泡液中的嗜中性细胞、淋巴细胞、总蛋白、乳酸脱氢酶、总磷脂和总胆固醇量增高,同时在病理检查中可观察到在肺泡腔内有脱落的肺泡上皮细胞和无定型渗出物产生。此研究结果表明当大鼠气管注入高剂量(62 mg/kg)磷化铟8天时可出现急性肺炎和上皮细胞损伤,而在低剂量(低于6 mg/kg)时未见肺炎的改变。
有报道〔1〕铟盐对动物的肝脏、肾脏和心肌都有毒性作用。急性铟盐中毒动物的肝脏出现明显充血、出血及灶性坏死;肾可出现表面出血及肾小管变性和坏死;心肌可出现肌纤维变性、横纹肌轻度退行性变。
为了验证由含有铟的各种合金所制造的假牙是否对牙龈组织存在毒性作用,Lijima S〔3〕把纯铟粉及其他7种纯金属分别直接注入大鼠的牙龈组织(第一上磨牙根部空腔)内,然后观察其组织病理改变,结果表明纯铟粉对大鼠具有弱的细胞毒性。
为了研究铟和汞铟合金的细胞毒性,Nakajima等〔4〕采用纯汞和分别含有5%,20%,50%铟的液体汞铟合金在细胞培养基中分别连续培养0~8 h、8~48 h、48~72 h后,再把其培养基提取液与小鼠成纤维细胞接触24 h 后通过测定琥珀酸脱氢酶活性 检验其细胞毒性。对照组采用聚四氟乙烯。其实验结果使用ANOVA和T检验(α=0.05)进行统计学分析比较,结果表明:0~8 h期间和8~48 h期间含铟20%的合金组细胞毒性比其他组低,P<0.05,具有统计学意义,而与对照组比较无显著性差异。其他合金组与对照组比较有轻微的活性降低。对于培养48~72 h期间所有的合金组基本上与对照组无差别。
铟及其化合物对皮肤毒性的研究也有报道〔1〕。采用金属铟、铟粉尘涂抹皮肤,无刺激作用。用5%氯化铟和硫酸铟涂于皮肤不引起局部损害及全身反应,但氰化铟涂于皮肤有高毒。
2.2 慢性毒性
当经口给予大鼠硫酸铟25~30 mg/日〔1〕,一直到27天也未发生任何毒作用,只有到72天时大鼠的体重才略有降低,出现不活泼和毛发粗糙,尸检未见任何病理改变。大鼠吸入不溶性三氧化二铟(In2O3)粉尘(0.5 μm)3个月,肺内产生非典型炎性反应,并伴有广泛肺泡内蛋白沉着,但未见纤维化。Tanaka等〔5〕以气管内注入方式每周给予雄性叙利亚金仓鼠7.5 mg 砷化铟(InAs)和磷化铟(InP),一共染毒15周,而对照组给予磷酸缓冲液。在仓鼠的整个存活期内,砷化铟组比对照组的仓鼠体重增长明显迟缓,差异具有统计学意义。而磷化铟组与对照组相比,仓鼠体重增长无明显差异。病理检查砷化 铟组和磷化铟组的仓鼠肺部可见蛋白质沉积、肺泡和支气管细胞增生、肺炎肺气肿和肺组织硬化等改变,其发生率都明显高于对照组,这项研究结果说明砷化铟和磷化铟可导致仓鼠的肺组织严重损伤。
慢性铟盐中毒可对肾脏有毒性作用,出现肾小管坏死。铟盐对肝、脾、肾上腺及心脏都有慢性危害,出现慢性炎症性改变。Aoki等〔6〕对氯化铟的蛋白合成毒性进行了研究,结果表明当暴露氯化铟浓度只有在300 μmol/L以下时,大鼠肾脏近曲小管细胞蛋白合成才不会有改变。
迄今为止尚未见到职业接触铟而发生的慢性中毒报道,这可能与人们对铟的毒性了解不足有关。对一组从事铟作业三年的工人进行全面体检,未发现有任何异常。对一组从事铟研究十年以上的工作人员进行肝功能、尿常规检查也未见异常变化。但在冶炼厂回收铟的工人中有全身乏力与骨关节疼痛,但是否与接触铟有关尚不能确定〔1〕。
2.3 生殖毒性
目前对于铟及其化合物在生殖毒性方面的研究报道相对较多。这些研究结果表明铟及其化合物具有生殖毒性。
Gilani等〔7〕把铟盐的溶解液注射到小鸡鸡胚(孵化第2天,0.1 ml/egg)的气囊中,而对照组给予生理盐水(0.1 ml/egg)。实验结果表明,铟具有胚胎毒性,可导致胚胎体大小异常、短肢畸形、颈部弯曲、鸡胚出血、内脏外翻和眼小畸形。铟对于小鸡鸡胚的LD50为38 mg/egg,其胚胎毒性大于钼、锰和铁,而小于镉、砷、钴和铜。
Rao DV〔8〕就含有放射性铟的药物,如柠檬酸铟(111In),对小鼠睾丸生物学影响进行了研究。研究结果表明这些含有铟的标记药物可大量减少精子数量。在体内铟的放射毒性要比其他毒性大很多。Nakajima等〔9〕根据铟的毒代动力学研究铟对大鼠胚胎的毒性作用,将怀孕9.5天的大鼠暴露于氯化铟(InCl3),其暴露浓度根据胚胎发育时间长短限制在25~50 μmol/L的浓度范围内。实验结果表明暴露浓度比暴露时间更重要。铟的生殖毒性是直接影响到胚胎或卵黄囊,而且研究者认为经口给予铟进行染毒时,生殖毒性较弱是由于铟到达胚胎的浓度降低所致。
Chapin等〔10〕经口给予瑞士小鼠氯化铟(InCl3)250 mg/kg,结果表明雄性小鼠的生殖系统和肝脏没有改变,通过检测N-己酰氨基葡萄糖苷浓度的降低可说明小鼠肾 脏受到影响。虽然雌性小鼠怀孕能力不受影响,但是雌性小鼠胚胎发育却受到负面影响,在母体体重增加的情况下,小鼠子宫内的胚胎死亡率增加,也就是说胚胎畸形率不增加,而胚胎死亡率增加,此结果并不影响母体体重的增加。在体外毒性实验也说明低剂量铟的生殖毒性直接导致胚胎死亡率增加,在胚胎体内也可检测出低含量的铟,并且其含量要比母体肝脏中的高。
综上所述,目前国内外对铟及其化合物毒性研究开展的还很少。国内在此方面研究尚属空白,既无监测方法,也无国家卫生标准。国外只有美国和英国已公布了铟的职业接触限值均为0.1 mg/m3〔11〕。而这两个国家铅的标准为0.15 mg/m3。说明铟的毒性不可轻视,应不断加强研究,为保护铟作业人员身体健康提供科学依据
金属铟的都能用来干什么?
占全球消费量83%。 二、化合物消费领域,占全球消费量9%。 三、锑化铟/砷货铟:红外探测、光磁器件、磁致电阻器及太阳能转换器等。。 四、磷化铟用于微波通讯、光纤通讯中的激光光源和太阳能电池材料;、硒铟铜多晶薄膜用于制造太阳能电池,在电池的负极材料中添加铟能起到防腐的作用。 五、合金领域,占全球消费量5%。 六、银铅铟合金可制造高速航空发动机的轴承;、铟锡合金可作真空密封材料和低熔点合金接点材料,作玻璃与玻璃或玻璃与金属之间的粘结剂;低熔点合金(如伍德合金)中加入七、铟可以降低其熔点,铟的熔点低,度左右。 八、金、钯、银、铜同铟组成的合金可用来制作假牙和装饰品。 九、半导体行业,占全球消费量3%。
上一篇:叶芃
下一篇:没有了