莆仙生活网 > 知识库 >

指数函数的图像和性质

来源:莆仙生活网时间:2024-03-03 03:19:41编辑:莆仙君

指数函数图像及性质是什么?

指数函数图像及性质如下:1、a>1,图像单调递增,走势是同为增函数时,底大近轴,对称性是底数互为倒数时,图像关于y轴对称。2、0<a<1,图像单调递减,走势是同为减函数时,底小近轴,对称性是底数互为倒数时,图像关于y轴对称。3、指数函数的自变量范围是(-∞,+∞),因变量范围是(0,+∞);当指数函数自变量范围在(-∞,0)时,因变量输出范围为(0,1)。指数函数的判定在理解指数函数的概念时,应抓住定义的“形式”像 y=2*3^x, y=2^1/x,y=3^根号x-2,y=(2^x)-1 等函数均不符合形式y=a^x(a>0,且a不等于1),因此它们都不是指数函数。指数函数的定义表达式中,在ax前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。

指数函数的图像是什么样的?

其图像是单调递增,x∈R,y>0,与y轴相交于(0,1)点,图像位于X轴上方,第二象限无限接近X轴,如下图所示:指数函数是重要的基本初等函数之一。一般地,y=ax函数(a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是 R 。注意,在指数函数的定义表达式中,在ax前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。画函数图像最基础的方法就是描点法。不过由于e是一个无理数,所以想要得到准确的点,除了(0,1)之外基本上就不可能了。不过我们依然可以取e的近似数,比如保留一位小数,取e约等于2.7,仍然可以作出e的负x次方的近似图像。虽然画某些函数的图像,我们可以得到足够的点的准确的坐标,但由于肉眼是有误差的,其实我们平时作出来的图像也都不可能保证百分之百准确,所以取e的近似值做出来的图像,也可以认为就是e的负x次方的图像了。

幂指对函数的图像和性质

正值性质当α>0时,幂函数y=xα有下列性质:1、图像都经过点(1,1)(0,0);2、函数的图像在区间[0,+∞)上是增函数;3、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0。负值性质当α<0时,幂函数y=xα有下列性质:1、图像都通过点(1,1);2、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。3、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。三、零值性质当α=0时,幂函数y=xa有下列性质:1、y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。什么是幂函数幂函数属于基本初等函数之一,一般y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。例如函数y=x0 、y=x1、y=x2、y=x-1(注:y=x-1=1/x、y=x0时x≠0)等都是幂函数。

上一篇:怎么让客户回你信息

下一篇:没有了

相关推荐

热门头条