七桥问题
哥尼斯堡七桥问题 可以证明么?
18世纪在哥尼斯堡城(今俄罗斯加里宁格勒)的普莱格尔河上有7座桥,将河中的两个岛和河岸连结,如图1所示.城中的居民经常沿河过桥散步,于是提出了一个问题:能否一次走遍7座桥,而每座桥只许通过一次,最后仍回到起始地点.这就是七桥问题,一个著名的图论问题.
这个问题看起来似乎不难,但人们始终没有能找到答案,最后问题提到了大数学家欧拉那里.欧拉以深邃的洞察力很快证明了这样的走法不存在.欧拉是这样解决问题的:既然陆地是桥梁的连接地点,不妨把图中被河隔开的陆地看成A、B、C、D4个点,7座桥表示成7条连接这4个点的线,如图2所示.
于是“七桥问题”就等价于图3中所画图形的一笔画问题了.欧拉注意到,每个点如果有进去的边就必须有出来的边,从而每个点连接的边数必须有偶数
个才能完成一笔画.图3的每个点都连接着奇数条边,因此不可能一笔画出,这就说明不存在一次走遍7座桥,而每座桥只许通过一次的走法.
欧拉对“七桥问题”的研究是图论研究的开始,同时也为拓扑学的研究提供了一个初等的例子.
哥尼斯堡七桥问题是什么
18世纪初普鲁士的哥尼斯堡,有一条河穿过,河上有两个小岛,有七座桥把两个岛与河岸联系起来。七桥问题有个人提出一个问题:一个步行者怎样才能不重复、不遗漏地一次走完七座桥,最后回到出发点。后来大数学家欧拉把它转化成一个几何问题——一笔画问题。他不仅解决了此问题,且给出了连通图可以一笔画的充要条件是:奇点的数目不是0个就是2个(连到一点的数目如果是奇数条,就称为奇点;如果是偶数条,就称为偶点。要想一笔画成,必须中间点均是偶点,也就是有来路必有另一条去路,奇点只可能在两端。因此任何图能一笔画成,奇点要么没有,要么在两端)数学家欧拉解决了此问题
上一篇:希腊爱情海
下一篇:没有了